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where u(k) is a whi hite noise with variance o°. This mode! has the following
rational transfer function H(z)
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3= 2 G0
k=

where 75) is the output residual of the recursive whitening jnverse filter
V(z}=1/H(z) a8 follows:
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We, now, present an iterative block component method (BCM)
foraloe’llmmnnmnol.l This iterative BCM consists : t{xe]

S5~step procedure:
(Sl)ﬁndaniniﬁalgneafor_lb;

(S2) update 4, using (16) below;

(S3) update 9, using (15) below;

(54) update §, using (19) below;

(SB) it 3, mmsu,thmmothmsow(sz)
Next, weprmthowtoupdate_o, andgb respectively.

A.Updatmg_o.
From(ls),oneunmthngoislinmrlymhledto_lo.'thn,wehave
thelem—equuuemmte? as follows (4]
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B.Updaﬁng!.:
The vector equation (13) can also be expressed as
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whese x, is given by (11) and X is an (N-n)xp matrix



x(-1) x(n-2) - - - x{n-p)
xa) x(a-1) - - xa-pt)

X = | x(n+1) x(n) xnp+2)|  (7)
x(N—2) x(N-8) -+ x(N-1-p)

Again, from (16), we see that e, is also linearly related to 4,. Thus, we have
t.helust—equamawtimaeé‘ufollows[q:

C. Updating &,
Since e(k) (see (10)) for k>n is a noolivear function of &, & popular

approach for obtaining & is to ue a gradient—type iterative algorithm to
update (i), in order to decrease J, at every iteration.

We update §,(1+1) from #,(j) using a modified Newton—Rapbson
typulgonthmubllov:
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1. SIMULATION EXAMPLE o

We now present a simulation example support that the
psiorma.nceofthepmposedntaahveBCMmthl to be estimated is
superior to that as 4 stmglynenobem(l.e.(ss)ramved) Synthetic
duax(k)medwaeGmanmdthedmlmgthwuN—loo For each
simulation example, 30 realizations of spectral estimates were obtained. The
wuhmuauepbuedmmova-ludmhnontomdxwethembﬂx

spectral estimator. The average (shown as a dot—dashed curve 30
mummmhmmth&eummmﬂdmty%sm

as a solid curve). The initial guess for 0 was obtained using the Durbin's

algorithm [2] from the residual series y(k) = x(k) + 3, where &y, k=1,2, ..,
p, were obtained using the least squares modified Yule—Walker equations

meshod 1
transfer function H(z) was selected to be an ARMA model with
(p,q)=(2,2) as follows: )

__1-—-15102 s‘ + 0.9604 z
) = oater 1 4 03122
whchhuapmofstmngmatz—ﬂ%e*ﬂ'(ou)anda.pmofpolua.t

’2'(0 21) The simulation results are shown in Figure 1a where 0
memma.teda.nd Figure 1b where §,=0. Fromtheseﬁgures onem

observe a spectral null and a spectral penk predicted for this case
where the time constant 7 of V(z)=1/H(z) is a.bout N/2, the variance
associated with the results shown in Figure 1a is much smaller than that
shown in Figure 1b. F&omﬁgu:elc,onemobservethuthebmmued
with the results shown in Figure 1a at the proximity of the spectral null is
abomuchmaﬂathnthaahownmﬁgurelbmthammmumof7d8

bias improvement at the spectral null

IV. CONCLUSIONS

For a wide—sense stationary process x(k), when the associated rational
transfer function modd H(z hasmongmsucht.hztthenmemnstutof
the inverse filter V(z)=1/H(z) is comparable to mumber of data N, the initial
conditions for computing the output residual e(k) of V(z) mgmﬁmﬂy affect
theetnnahonwcuracyofv In this paper, the order (p, ofH(z)was
assumed to be known a (a?l it needs to be d eta(-mg?ed
[2,3]. We have presen! Amnew iterative block compopent method whxch can

nmnltaneouslyestxmaev(z)aswelluthemtial conditions. By simulation,
we demonstrated that our power spectral estimator has much smaller
munemdmaﬂebmthmthnmththemmﬂmndlmwmngiysetto
be zero as the time constant of V(z) is comparable to N. The study reported
in this paper also indicates that some performance degr to any
spectral estimator involving the inverse filtering of data without estimating

(19)

(20)

(22)

theinitialg)ndiﬁomiamenubleuthenumbeofdnaunot much larser

than the time comstant of the associated inverse filter.
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Figure 1. (a) Overlaid realizations associated with §, being estimated;
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(b) overlaid realizations associated with g;=0 (c) Average

(thm dot—dasbed curve) of realizations assouar.ed with (a);
ck dot- curve) of realizations associated

with w ; and the true power spectral density (solid curve).



